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Abstract
A wide variety of different physical systems can be described by a relatively
small set of universal equations. For example, small-amplitude nonlinear
Schrödinger dark solitons can be described by a Korteweg-de Vries (KdV)
equation. Reductive perturbation theory, based on linear boosts and Gallilean
transformations, is often employed to establish connections to and between
such universal equations. Here, a novel analytical approach reveals that the
evolution of small-amplitude Helmholtz–Kerr dark solitons is also governed by
a KdV equation. This broadens the class of nonlinear systems that are known
to possess KdV soliton solutions, and provides a framework for perturbative
analyses when propagation angles are not negligibly small. The derivation of
this KdV equation involves an element that appears new to weakly nonlinear
analyses, since transformations are required to preserve the rotational symmetry
inherent to Helmholtz-type equations.

PACS numbers: 42.65.−k, 42.65.Tg, 05.45.Yv

1. Introduction

Solitons are self-confined waves that propagate stably in nonlinear media. Such localized
structures appear in planar optical waveguides when the (linear) spreading due to diffraction is
balanced exactly by (nonlinear) narrowing from medium self-focusing. The evolution of Kerr
spatial solitons has been routinely described by the nonlinear Schrödinger (NLS) equation
[1, 2]. This paraxial model describes axial and near-axial wave propagation, arising from the
interplay of one-dimensional diffraction and host refractive index changes that vary linearly
with the local beam intensity. For a focusing Kerr medium, bright spatial solitons exist subject
to vanishing-asymptotic boundary conditions [3]. These solutions are highly localized in
the transverse dimension and have a sech-shaped profile. For defocusing media, the NLS
equation supports dark solitons that involve a tanh-shaped component [4]. This latter class of
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solution has a transverse intensity distribution consisting of a uniform (non-zero) background
modulated by a localized ‘dip’. When this dip does not result in a point of zero intensity, the
dark soliton is termed ‘grey’.

It is known that small-amplitude NLS dark solitons are governed by the Korteweg-de Vries
(KdV) equation [5]. The dynamics of such solitons in the presence of various perturbative
effects can therefore be analysed in terms of KdV theory [6]. This general property has,
for example, been exploited to analyse temporal solitons in optical fibres, where stimulated
Raman scattering may perturb the nonlinear refractive index change [7–9]. Other analyses
of small-amplitude dark pulses in optical fibres have shown that KdV-type equations govern
dynamics near the zero-dispersion point [10, 11]. The multiple-scales formalism employed
in these analyses has also been applied to a wide variety of other nonlinear systems [12].
For example, waves in electrical transmission lines and those on 1D atomic chains can
be described by KdV equations. The connection between solitons of strongly dispersive
and weakly nonlinear (e.g. NLS, where the linear-dispersive term involves a second-order
derivative) and weakly dispersive and weakly nonlinear (e.g. KdV, where the linear-dispersive
term involves a third-order derivative) systems highlights a certain universality that exists for
nonlinear wave equations. In particular, it has been assumed that the integrability of both the
KdV and NLS equations is the principle reason for such a mathematical connection.

Weakly nonlinear analysis does not only furnish new analytical frameworks, but it can also
provide new insights and establish trans-disciplinary activity. For example, temporal vector
solitons, in the so-called standard configuration of an optical fibre [13], have underlying
universal equations in the form of the well-known Zakharov equations of plasma physics.
Ion-acoustic waves in plasmas are themselves described by universal nonlinear equations
[14, 15]. Coullet et al [16] showed that the laser Maxwell–Bloch equations may be reduced
to a complex Ginzburg–Landau equation. This particular contribution underpinned advances
concerning optical vortices and optical pattern formation [16, 17], and in general laser physics
[18].

Here, we consider spatial solitons in two-dimensional planar waveguides, where there is
a longitudinal dimension and a single (effective) transverse dimension. Such solitons are
expected to play a central role as stable information units in future optical applications
involving, for example, photonic switching, optical interconnects, beam steering and
information/image processing. The dominant theme of this paper concerns the oblique-
propagation (i.e. off-axis) aspects of spatial solitons. In particular, we demonstrate that
Helmholtz–Kerr dark solitons (strictly speaking ‘solitary waves’), which are exact analytical
solutions of a non-integrable wave equation, are also described by a KdV equation in
their small-amplitude limit. The multiple-scales analysis employed here involves a novel
transformation that is necessary in order to respect the spatial symmetry inherent to Helmholtz-
type wave equations. This transformation corresponds physically to a rotation of the unscaled
coordinate axes, rather than a Gallilean linear boost. Our framework is thus fundamentally
different from those considered by other authors [5–18], whose analyses are based upon
Gallilean-type invariance laws.

2. Helmholtz dark solitons

In optics, one frequently encounters the paraxial approximation. A spatial beam is paraxial
if all three of the following criteria are satisfied: it must be (i) broad in comparison to the
optical wavelength, (ii) of sufficiently low intensity and (iii) propagating either along, or at
negligible angles to, the reference axis. If all three conditions are not met simultaneously, then
the paraxial approximation fails and the beam may be described as ‘non-paraxial’.



Korteweg-de Vries description of Helmholtz–Kerr dark solitons 15357

By relaxing conditions (i) and (ii), one defines the ultra-narrow beam (or ‘sub-wavelength’)
type of non-paraxial regime. In this case, one must take full account of the vectorial nature
of the electric field, and allow for additional contributions from rapid spatial variations in the
nonlinear polarization [19–21]. In this paper, we are concerned solely with the Helmholtz
non-paraxial scenario. This involves broad, moderately intense optical beams propagating
and interacting at arbitrarily large angles with respect to the longitudinal (reference) direction
[22]. In other words, criteria (i) and (ii) are always satisfied rigorously, but (iii) is relaxed.
For uniform media, and with the explicit assumption of broad beams, one may consider the
refractive-index distributions within the scalar approximation. In this regime, higher order
perturbative correction terms in the governing wave equation are unnecessary. Rather, the
Helmholtz angular correction to paraxial theory, which is purely geometrical in nature, can be
of any order even though the optical beam is always broad [22–24]. When oblique evolution
is the sole source of non-paraxiality, the electric field can be regarded as predominantly
transverse (polarized, typically, in the x–z plane of the waveguide), and a nonlinear Helmholtz
(NLH) equation captures the full description of wave propagation. By omitting the slowly
varying envelope approximation, the transverse (x) and longitudinal (z) coordinates occur
symmetrically and, as a consequence, light is allowed to diffract in both these dimensions.
Since there is no physical distinction between x and z in uniform media, the wave equation
retains the inherent spatial symmetry [22].

For a Kerr medium, where the refractive index distribution n = n0 + n2|E|2 is well
approximated by n2 ≈ n2

0 + 2n0 n2|E|2, the NLH equation may be written in a form more
compatible with the familiar cubic NLS model,

κ
∂2u

∂ζ 2
+ i

∂u

∂ζ
+

1

2

∂2u

∂ξ 2
± |u|2u = 0. (1)

Here, the spatial coordinates are scaled as ζ = z/LD and ξ = √
2x/w0, where LD = kw2

0

/
2

is the diffraction length of a Gaussian beam with waist w0. κ = 1
/
k2w2

0 = (λ/w0)
2
/

4π2n2
0

is the non-paraxial parameter and u is the normalized electric field envelope E(x, z) =
E0u(x, z) exp(ikz), where E0 = (n0/k|n2|LD)1/2, k = 2πn0/λ, λ is the optical wavelength,
n0 is the linear refractive index and n2 is the Kerr coefficient. The ± sign corresponds to a
focusing/defocusing medium, respectively.

The Helmholtz operator κ∂ζζ leads to several physical features absent from paraxial theory.
These have been discussed in earlier publications, where exact analytical bright [22, 23] and
dark [24] soliton solutions were first reported. Exact analytical soliton solutions are now
known for a wide range of scalar and vector Helmholtz-type wave equations [25]. These
equations and their solutions could provide a key analytical platform for modelling novel
off-axis contexts (oblique propagation and multiplexing) involving beams in various types of
nonlinear media. The new solution families capture non-trivial corrections to the paraxial
beam profile (angular beam broadening) and to the beam phase. Another attractive feature
of NLH-based models is that they can support both travelling- and standing-wave solutions.
They are therefore capable of describing accurately the propagation and interaction of multiple
beams at arbitrary angles with respect to the reference direction [26].

An exact Helmholtz dark soliton is [24]

u(ξ, ζ ) = u0[A tanh � + iF ] exp


i

√
1 − 4κu2

0

1 + 2κV 2

(
−V ξ +

ζ

2κ

)
 exp

(
−i

ζ

2κ

)
, (2a)

�(ξ, ζ ) = u0A(ξ + Wζ)√
1 + 2κW 2

, (2b)
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W = V − V0

1 + 2κV V0
, (2c)

V0 = u0F√
1 − (2 + F 2)2κu2

0

, (2d)

where A2 + F 2 = 1. The structure of this soliton has similarities with its paraxial counterpart.
V is the transverse velocity of the nonlinear plane-wave background field, defined by the
choice of reference direction, and V0 is the intrinsic velocity associated with greyness of the
localized soliton component. W is the net velocity, and is related to velocity summation in
the unscaled reference frame. The velocities (V , V0 and W ) in the scaled (ξ, ζ ) reference
frame and propagation angles (θ , θ0 and θ − θ0, respectively) in the laboratory (x, z) frame
are related through tan θ = √

2κV , tan θ0 = √
2κV0 and tan(θ − θ0) = √

2κW . The sizes of
the contributions κV 2, κV 2

0 and κW 2, arising from the Helmholtz operator κ∂ζζ , are evidently
determined solely by the sizes of the propagation angles θ and θ0. They may each, for example,
be of order unity, even though for the Helmholtz type of non-paraxiality, one always has that
κ � O (1) (i.e. broad beams). On the other hand, the classic paraxial dark soliton solution
requires each of the angular contributions κ × (velocity)2 to be simultaneously much less than
unity.

The complex beam envelope of (2a) can be recast into the form

u(ξ, ζ ) = u0[1 − A2sech2�(ξ, ζ )]1/2 exp[iψ(ξ, ζ )]

where ψ(ξ, ζ ) is a phase distribution. In the small-amplitude limit, where A � 1,

u(ξ, ζ ) � u0

[
1 − A2

2
sech2�(ξ, ζ )

]
exp[iψ(ξ, ζ )]. (3)

It is this limit that is of particular interest for the proceeding analysis where perturbations to
the nonlinear plane wave background field are quantified.

3. Helmholtz master equations

The defocusing NLH equation (1) has a nonlinear plane wave solution that can be found by
ignoring the transverse diffraction term. Substitution of the ansatz u(ζ ) = u0 exp

(
ikζ ζ

)
into

the resulting wave equation yields a familiar Helmholtz auxiliary equation

κk2
ζ + kζ + u2

0 = 0. (4)

This quadratic equation has two solutions, corresponding to on-axis (V = 0) forward- and
backward-propagating waves. The forward solution is

u(ζ ) = u0 exp

[
i

2κ

(−1 +
√

1 − 4κu2
0

)
ζ

]
. (5)

In the double limit κ → 0 (broad beams) and κu2
0 → 0 (moderate intensities), plane wave

(5) tends to that of the (paraxial) NLS equation, that is, u(ζ ) = u0 exp
(−iu2

0ζ
)
. To proceed,

solutions to (1) are sought in the form

u(ξ, ζ ) = [u0 + a(ξ, ζ )] exp

[
i

2κ

(−1 +
√

1 − 4κu2
0

)
ζ + iφ(ξ, ζ )

]
, (6)

where the functions a(ξ, ζ ) and φ(ξ, ζ ) are real perturbations to the amplitude and phase,
respectively, of the nonlinear plane wave. By substituting (6) into (1), and retaining terms up
to second order in the perturbations, a pair of master equations is found
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√
1 − 4κu2

0

∂a

∂ζ
+ κ(u0 + a)

∂2φ

∂ζ 2
+

u0 + a

2

∂2φ

∂ξ 2
+ 2κ

∂a

∂ζ

∂φ

∂ζ
+

∂a

∂ξ

∂φ

∂ξ
= 0, (7a)

κ
∂2a

∂ζ 2
−

√
1 − 4κu2

0 (u0 + a)
∂φ

∂ζ
− κu0

(
∂φ

∂ζ

)2

+
1

2

∂2a

∂ξ 2
− u0

2

(
∂φ

∂ξ

)2

− 2u2
0a − 3u0a

2 = 0.

(7b)

4. Leading-order behaviour

To examine the leading-order behaviour of the perturbation, one retains only the linear terms
in (7) so that

√
1 − 4κu2

0

∂a

∂ζ
+ κu0

∂2φ

∂ζ 2
+

u0

2

∂2φ

∂ξ 2
= 0, (8a)

κ
∂2a

∂ζ 2
− u0

√
1 − 4κu2

0

∂φ

∂ζ
+

1

2

∂2a

∂ξ 2
− 2u2

0a = 0. (8b)

From this pair of coupled equations it is straightforward to show that, at leading order, the
perturbation is a phase wave in (ξ, ζ ) space that satisfies the equation (∂ζζ − C2∂ξξ )φ = 0. C

is the wave speed of these quasi-linear diffracting waves, and satisfies

C2 = u2
0

1 − 6κu2
0

. (9)

In the limit κu2
0 → 0, the linear wave speed obeys C2 → u2

0, agreeing with the result arising
from the analysis of the corresponding NLS equation [5]. Equation (9) also demonstrates that
the leading-order dynamical behaviour is consistent, both physically and mathematically, with
the full Helmholtz soliton solution (2), since

lim
F→1

V 2
0 → C2

where the limit F → 1 is equivalent to A → 0 (the small-amplitude limit).

5. Weakly nonlinear analysis

To develop the description of perturbations into the weakly nonlinear regime, we undertake
a multiple-scales analysis. Such a procedure entails series expansions, involving both
independent and dependent variables of the system, in terms of a formal small parameter
0 < ε � 1. For two independent variables, such as x and z, one typically defines

τ = εp(x − Cz), Z = εqz.

Here, τ and z are referred to as the slow variables, since large changes in x and z produce
only small changes in τ and z. A suitable set of indices (p, q) can be identified by analysing
the linear dispersive properties of the system. The transformation above represents a linear
boost (Gallilean transformation) to a frame moving at a speed C along the x-axis. In all of the
analyses cited in section 1, the connection between slow and independent variables is based
upon a Gallilean transformation [27].

The weakly nonlinear analysis of the NLH equation (1) differs fundamentally from those
of paraxial NLS equations. Introducing a Gallilean transformation into the NLH framework
breaks the rotational symmetry of the problem and lacks a physical correspondence with the
phenomena concerned. A key objective of Helmholtz soliton theory is to eliminate such
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unphysical features and to study the implications of full spatial symmetry for more general
soliton dynamics.

It can be shown that the invariance relations for the exact Helmholtz dark soliton
solution (2) are given by [28]:

ξ = ξ ′ + V ζ ′
√

1 + 2κV 2
, (10a)

ζ = −2κV ξ ′ + ζ ′
√

1 + 2κV 2
, (10b)

u(ξ, ζ ) = exp

[
iV ξ ′

√
1 + 2κV 2

+
i

2κ

(
1 − 1√

1 + 2κV 2

)
ζ ′

]
u′(ξ ′, ζ ′). (10c)

V is a soliton velocity parameterizing the transformation in the scaled (ξ, ζ ) frame.
Equations (10a) and (10b) correspond to a rotation of the unscaled (x, z) coordinate axes
through an angle θ = tan−1(

√
2κV ) [22–24]. In the limit κV 2 → 0, that is the angle θ

becomes vanishingly small, one recovers the Gallilean invariance laws of the NLS equation
exploited by other authors [5–18]. Equation (10c) expresses how the wave-field u must
transform in order to ensure form invariance of equation (1).

To respect rotational symmetry, the slow variables for the Helmholtz analysis are taken as

τ = ε
ξ + Cζ√
1 + 2κC2

, (11a)

Z = ε3 −2κCξ + ζ√
1 + 2κC2

. (11b)

It should be noted that C is a leading-order representation of the intrinsic velocity of the
Helmholtz dark soliton, since the direction of the plane wave background field is considered
to be axial. Equations (11) are also consistent with the Gallilean transformation laws of the
NLS equation in the limit κC2 → 0. The perturbations a(ξ, ζ ) and φ(ξ, ζ ) are now expanded
as asymptotic series in terms of ε,

a(ξ, ζ ) =
∞∑

j=0

ε2(j+1)aj (ξ, ζ ) � ε2a0(ξ, ζ ) + ε4a1(ξ, ζ ) + · · · (12a)

φ(ξ, ζ ) =
∞∑

j=0

ε2j+1φj (ξ, ζ ) � εφ0(ξ, ζ ) + ε3φ1(ξ, ζ ) + · · · . (12b)

Substituting the slow variables and the field expansions into master equations (7) and collecting
together terms at O(ε2), O(ε3), O(ε4) and O(ε5) yields,

Cγ
∂a0

∂τ
+

u0

2

∂2φ0

∂τ 2
= 0, (13a)

Cγ
∂a1

∂τ
+

u0

2

∂2φ1

∂τ 2
= −γ

∂a0

∂Z
− a0

2

∂2φ0

∂τ 2
− ∂a0

∂τ

∂φ0

∂τ
− 2κCu0

1 + 2κC2

∂2φ0

∂Z∂τ
, (13b)

Cγ
∂φ0

∂τ
+ 2u0a0 = 0, (13c)

u0

(
Cγ

∂φ1

∂τ
+ 2u0a1

)
= 1

2

∂2a0

∂τ 2
− u0γ

∂φ0

∂Z
− u0

2

(
∂φ0

∂τ

)2

− Cγa0
∂φ0

∂τ
− 3u0a

2
0, (13d)
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where γ ≡ (
1 − 4κu2

0

)1/2
(1 + 2κC2)−1/2. Self-consistency requires (13a) and (13c) to be

equivalent. It is straightforward to show that they are indeed equivalent if C is given by (9).
This encouraging result links the phase φ0 to the amplitude a0 through

∂φ0

∂τ
= −2u0

Cγ
a0. (14)

Next, taking the τ derivative of (13d), and using (14), brings out the underlying KdV structure
of the Helmholtz problem

2u2
0

C

∂a0

∂Z
+

1

2

∂3a0

∂τ 3
− 6u0a0

∂a0

∂τ
= u0

(
2u0

∂a1

∂τ
+ Cγ

∂2φ1

∂τ 2

)

+ u0
∂φ0

∂τ

∂2φ0

∂τ 2
+ Cγ

(
a0

∂2φ0

∂τ 2
+

∂a0

∂τ

∂φ0

∂τ

)
. (15)

By manipulating (13b), and using (14), the first two terms on the right-hand side of (15) can
be replaced by

2u2
0

C

(
1 − 8κu2

0

1 − 4κu2
0

)
∂a0

∂Z
+ 6u0a0

∂a0

∂τ
.

With further algebraic manipulation, the following KdV equation is obtained:

1

1 + 2κC2

(
2u2

0

C

)
∂a0

∂Z
+

1

4

∂3a0

∂τ 3
− 6u0a0

∂a0

∂τ
= 0. (16)

In the limit κC2 → 0, the corresponding NLS result [5] is obtained, as should be the case.
Equation (16) has the soliton solution

a0(Z, τ ) = −
(

α2

2u0

)
sech2[α(τ − V̄ Z)], (17a)

V̄ (κ, α) = α2

(
C

2u2
0

)
(1 + 2κC2), (17b)

where α is a free parameter and V̄ is an effective velocity in terms of the new Helmholtz slow
variables. The expression for V̄ includes a, potentially significant, correction of O(κC2) to its
paraxial counterpart. Comparison of the KdV solution with the small-amplitude approximation
(3) yields a simple relationship between the dark soliton amplitude and the formal expansion
parameter ε. This is the same as in the paraxial case, and is given by

Au0 = εα. (18)

Power series expansions, and use of (2), (9), (11) and (18), verify convergence of the
approximate Helmholtz soliton (3) and the KdV solution (17) in the limit of low soliton
amplitude. Moreover, the intrinsic velocity V0, as given by (2d), can be shown to be equal to
C plus a power series in A2, where V̄ is precisely the first-order correction in this series. V̄

thus accounts for the amplitude-dependence of V0.

6. Conclusion

We have presented a novel multiple-scales approach that incorporates the preservation of
rotational symmetry embodied in NLH equations. It has been demonstrated, for the first time,
that small-amplitude Helmholtz–Kerr dark solitons satisfy a KdV equation. Particular novelty
arises from noting that the integrable KdV equation has been derived from the non-integrable
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NLH equation. A physical interpretation of this result can be uncovered by observing that
the Helmholtz slow variables describe a soliton in a near-paraxial framework, and that in the
paraxial limit this soliton does indeed satisfy an integrable wave equation.

Perturbations to the solitons may be analysed using KdV theory. For example, the
potential use of quasi-linear solitons as information signals that are guided in re-configurable
refractive waveguides (written to the medium by relatively intense optical beams) has greater
promise when signals can be guided at arbitrary propagation angles.

The NLH equation considered is a generalization of the NLS equation through a generic
modification to the linear wave operator. A connection has thus been established between the
KdV equation and a wider class of nonlinear wave equations. Numerous other NLH equations
can be shown to possess exact analytical soliton solutions [25]. Further new connections,
involving such nonlinear wave equations, may be established and these may provide alternative
analytical frameworks and novel insights in these cases.

Finally, we comment on a potential alternative approach to establishing a connection
between Helmholtz–Kerr and KdV solitons. There exists a formalism for mapping solutions
of a generalized KdV equation onto solutions of the NLS equation [29–31]. This is based
on the fluid equations associated with the NLS system, derived by introducing a Madelung
transformation. However, we have not found an equivalent mapping when the NLS equation
is replaced by the NLH equation. A generalized procedure, such as that used by Fedele
et al [29–31], is also unlikely to exist since the familiar fluid equations are not recovered in
the Helmholtz case.
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